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A introduction to BEM–FEM coupling
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(Courtesy of Jin–Fa Lee, EE, Ohio State)
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Model geometry...

Ω

Ω
+

Γ

ν

Problem set in free space Rd

(d = 2 or 3), with an interface
separating bounded from
unbounded.

Remark. The index + is used
for all things exterior. No index
is used for interior quantities
and limits.
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... and model equation

Transmission problem

u ∈ H1(Ω), u+ ∈ H1(Ω+)

−∆u + u = f in Ω,

−∆u+ + u+ = 0 in Ω+,

γ+u + gD = γu on Γ,

∂+
ν u + gN = ∂νu on Γ.

Warning. I’m considering the Yukawa equation to forget about
conditions at infinity. Wait for Laplace though.
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Layer potentials and boundary integral operators

E(x, y):= fundamental solution (Green’s function in free space)

Potentials are defined in Rd \ Γ:

Sψ :=

∫
Γ

E( · , y)ψ(y)dΓ(y)

Dφ :=

∫
Γ
∇yE( · , y) · n(y)φ(y)dΓ(y)

Operators are defined on Γ:

Vψ :=

∫
Γ

E( · , y)ψ(y)dΓ(y)

Kφ :=

∫
Γ
∇yE( · , y) · n(y)φ(y)dΓ(y)
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Green’s Integral Representation Theorem

(Part 1)

For any

u ∈ H1(Ω+) such that −∆u + u = 0 in Ω+,

we can explicitly write u in terms of its Cauchy data on the
boundary Γ, using both layer potentials:

u = Dγ+u − S∂+
ν u in Ω+.
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... aka Green’s Third Formula

(Parts 2 & 3)

This was Part 1:

u = Dγ+u − S∂+
ν u in Ω+.

If we specialize the right–hand side of this expression to the
boundary we obtain an integral identity

1
2γ

+u = Kγ+u − V∂+
ν u on Γ,

and if we look inside, everything vanishes

0 = Dγ+u − S∂+
ν u in Ω.
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Notation and facts

Interior bilinear form:

((u, v))1,Ω :=

∫
Ω
(∇u · ∇v + u v)

〈 · , · 〉 is the duality product H−1/2(Γ)× H1/2(Γ); think of it
as the L2(Γ) inner product (when we discretize it’ll be just
that)

We can write the integral identity as follows:

(1
2 − K)γ+u + V∂+

ν u = 0 on Γ

or in weak form

〈µ, (1
2 − K)γ+u〉+ 〈µ,V∂+

ν u〉 = 0 ∀µ ∈ H−1/2(Γ)
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How to derive the coupling method

Imagine for a while that you know λ := ∂+
ν u. Then you can

solve the interior Neumann problem

((u, v))1,Ω = (f , v) + 〈∂νu, γv〉
= (f , v) + 〈gN , γv〉+ 〈λ, γv〉.

Imagine now that you have solved this problem and you
export γu. Then you can use your integral identity as an
equation to find λ = ∂+

ν u

〈µ,Vλ〉 = −〈µ, (1
2 − K)γ+u〉

= −〈µ, (1
2 − K)γu〉+ 〈µ, (1

2 − K)gD〉

Instead of iterating, take the two equations as a whole.
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The Johnson–Nédélec non–symmetric coupling

Unknowns: u ∈ H1(Ω), λ := ∂+
ν u ∈ H−1/2(Γ)

Find u ∈ H1(Ω), λ ∈ H−1/2(Γ) s.t.

((u, v))1,Ω −〈λ, γv〉 = (f , v) + 〈gN , γv〉

〈µ, (1
2 − K)γu〉 +〈µ,Vλ〉 = 〈µ, (1

2 − K)gD〉

for all v ∈ H1(Ω), µ ∈ H−1/2(Γ).

Representation formula:

u+ := D(γu − gD)− Sλ

Numerical approximation by Galerkin methods (BEM–FEM)
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A picture in 1977

3 64 0. C. ZIENKIEWICZ, D. W. KELLY AND P. BETTESS 

(a )  ( b )  

Figure 2. ‘Boundary Solution’ elements with conventional coupling (a) interior element (b) infinite-exterior element 

‘exterior’ problems like those with a field going to infinity as shown in Figure 2(b). In both cases 
the shaded regions could be solved as ‘elements’ involving boundary solution processes and it 
would be desirable to incorporate these into a standard finite element system. Indeed on some 
occasions it is desirable to use the boundary solution method in subdomains (elements) so as to 
reduce problem bandwidths. Here linking of such e l e d n t s  is described by Lachat and 
Watson.s2 These authors have shown how this is advantageous. It is desirable however to 
attempt to obtain such linking in a general form which will 

(a) yield symmetric matrices for self adjoint problems 
(b) be capable of standard finite element assembly in conventional programs 
It is with such problems that the present section is concerned. 

In the context of the general boundary solution procedures described in the previous section 
consider an element of an exterior or interior kind illustrated in Figure 3. 

‘1 

Figure 3. A typical boundary solution element 

Along the interface labelled rl, the element is required to join other elements with 4 prescribed 
along this interface as 

&=* (39) 
be standing for nodal values of parameters (usually nodal values of 6 at nodes of this element) 
and N standing for a unique interpolation function. This interpolation function will generally be 
of the same kind as that used in the standard finite element process required to ensure 
continuity. Using equation (26) we can immediately write 

an*= SaT[Kea+Kbe +P]+SbeTeTa  (40) 
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The story of it

Formulations and experiments in the engineering literature:
see for instance Zienkiewicz, Kelly & Bettess (77)

Analysis by Johnson & Nédélec (80), Brezzi & Johnson
(79), using discrete Fredholm theory (see later)

More numerical evidence in Costabel, Ervin & Stephan
(91)

Generalization by Wendland (86,88) for sufficiently
discretized BEM

Giving up and moving to symmetric methods, by Costabel
(87) & Han (90)

FJS Non–symmetric BEM–FEM 14 / 37



The original proof (using Fredholm theory)

Bilinear form

a
(
(u, λ), (v , µ)

)
:= ((u, v))1,Ω − 〈λ, γv〉

〈µ, (1
2 − K)γu〉+ 〈µ,Vλ〉

Gårding’s inequality

a
(
(u, λ), (u,2λ)

)
= ((u,u))1,Ω−〈λ, γu〉

〈λ, γu〉−〈2λ,Kγu〉+ 2〈λ,Vλ〉
= ((u,u))1,Ω + 2〈λ,Vλ〉−〈2λ,Kγu〉
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The original proof (using Fredholm theory, cont’d)

Assume that K is compact (as in Kompakt) and take the
principal part of the quadratic form:

appal
(
(u, λ), (u,2λ)

)
= ((u,u))1,Ω + 2〈λ,Vλ〉

Fortunately, V is elliptic in H−1/2(Γ). The key identity is this
one1:

〈λ,Vλ〉 = ((u∗,u∗))1,Rd , where u∗ = Sλ.

From this identity you prove

〈λ,Vλ〉 ≥ CΓ‖λ‖2
−1/2,Γ.

1This was first set this clearly (in the numerical analysis community) by
Nédélec & Planchard (1973), but it might be older.
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Wrapping it up

The principal part of the operator is elliptic (after
multiplying the second equation by two)...

... provided that K is compact.

Elliptic + compact = Fredholm of index zero
(Fredholm/Riesz/Hilbert theory)

Galerkin methods with the approximation property are
convergent for elliptic + compact operators. (Probably first
shown, in a very abstract language, by Hildebrandt &
Wienholtz, 60-ish.)

So the question is...

... is K ever compact?
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A picture in 1980
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... and the explanation to the picture

K is compact for sufficiently smooth Γ (Lyapunov smooth)

K is not compact for polygons/polyhedra

K is never compact for the elasticity system
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The story of it (cont’d, apologies for omissions)

The (mathematical) non–symmetric branch:
Sequeira for Stokes
Gatica & Hsiao for nonlinear problems
Bielak & MacCamy for elasticity (with pseudo-stress)
Meddahi & cols, using smooth boundaries and curved
triangles, etc
Rapún & FJS, with nodal BEM–FEM connection

The pro–symmetrics:
Stephan for nonlinear, also Gatica & Hsiao
Meddahi et al for mixed
Carstensen & Funken for mixed and non–conforming
Maischack for variational inequalities
Gatica & FJS for DG–BEM with several sequels (Bustinza,
Heuer, Cockburn, Guzmán)
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The new proof
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The story of it (recent past)

FJS (Somewhere over the Atlantic, May 08, pub 09): every
Galerkin method for the Johnson–Nédélec coupling is
equivalent to a well posed elliptic problem and hence
stable.

Steinbach (Graz, July 09): with a small modification
requiring the equilibrium distribution (not needed for the
Yukawa operator), the JN system is elliptic: proof uses the
machinery of symmetric BIE representations of
Steklov–Poincaré operators.

Gatica, Hsiao & FJS (Delaware, August 09): the JN system
is elliptic: proof uses results and representations that are
already present in Nédélec–Planchard (73).
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What you need to know for the new proof

If u∗ := Sλ ∈ H1(Rd), then

〈λ,Vλ〉 = ((u∗,u∗))1,Rd

∂−ν u∗ = 1
2λ+ Ktλ

Here Kt is the transpose of K, so that you can write

〈Ktλ, φ〉 = 〈λ,Kφ〉, λ ∈ H−1/2(Γ), φ ∈ H1/2(Γ).
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The new ellipticity result

a
(
(u, λ), (u, λ)

)
= ((u,u))1,Ω−〈λ, γu〉

〈λ, (1
2 − K)γu〉+ 〈λ,Vλ〉

= ((u,u))1,Ω−〈λ, (1
2 + K)γu〉+ 〈λ,Vλ〉

= ((u,u))1,Ω−〈(1
2 + K)tλ, γu〉+ 〈λ,Vλ〉

= ((u,u))1,Ω−〈∂−ν u∗, γu〉+ ((u∗,u∗))1,Rd

= ((u,u))1,Ω−((u∗,u))1,Ω + ((u∗,u∗))1,Rd

≥ 1
2((u,u))1,Ω + 1

2((u∗,u∗))1,Rd

= 1
2((u,u))1,Ω + 1

2〈λ,Vλ〉

QUOD DEMOSTRANDUM ERAT
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The key point to keep in mind...

The quadratic form satisfies:

a
(
(u, λ), (u, λ)

)
= ((u,u))1,Ω−((u∗,u))1,Ω + ((u∗,u∗))1,Rd

where u∗ = Sλ. In principle we are taking

u∗ ∈ H1(Rd)

to control the term in blue and only then we go back to the
integral equation.
Actually,

u∗ ∈ {u∗ ∈ H1(Rd) : −∆u∗ + u∗ = 0 in Rd \ Γ}.

We’ll come back to this later.
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Straightforward generalizations
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Exterior Dirichlet problem

Ω
−

Γ
Ω

+

Ω
obs

Ω
int

Γ
Σ

Ω
+

u = 0 on Σ

−∆u + u = f in Ωint

−∆u+ + u+ = 0 in Ω+

T.C. on Γ

Formulation with u ∈ H1
Σ(Ωint) and λ = ∂+

ν u ∈ H−1/2(Γ).
Step in the analysis:

−〈∂−ν u∗, γu〉 = −((u∗,u))1,Ωint ≥ −1
2‖u‖2

1,Ωint
− 1

2‖u∗‖2
1,Rd
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Laplacian in three dimensions

Ω
−

Γ
Ω

+

Ω
obs

Ω
int

Γ
Σ

Ω
+ u = 0 on Σ

−∆u = f in Ωint

−∆u+ = 0 in Ω+

T.C. on Γ

u = o(1) at infinity

Novelty: single layer potentials are in a different space

u∗ ∈ {u : ρu,∇u ∈ L2(R3)}, ρ(x) := (1 + |x|2)−1/2

(Weighted spaces by Leray, Beppo–Levi, etc)
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Laplacian in two dimensions

Modifications:

λ ∈ {λ ∈ H−1/2(Γ) : 〈1, λ〉 = 0}
New weight in the Sobolev space for the single layer
potential.

Remarks:

Bounded solutions can be obtained by adding a constant

Logarithmically unbounded solutions (with prescribed
behavior) can also be studied

Problems in free space (2 and 3 dimensions) have energy
free solutions that have to be dealt with
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Variable coefficients

If we change the interior bilinear form by

((u, v))κ,Ω :=

∫
Ω

(
κ∇u · ∇v + ρu v

)
we are dealing with the interior non–homogeneous problem

−div (κ∇u) + ρu = f ,

and we naturally adapt the second transmission condition to

(κ∇u) · ν = ∂+
ν u + gN .
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Variable coefficients (2)

The argument requires to think of this quadratic form

((u,u))κ,Ω − ((u∗,u))1,Ω + ((u∗,u∗))1,Rd

and it looks like we really need

‖u‖1,Ω ≤ Cmat‖u‖κ,Ω with Cmat < 2.

In a way, the boundary integral method is flooding the interior
domain with energy and we need the interior material to be able
to cope with all the incoming energy. (This is not entirely true.)

FJS Non–symmetric BEM–FEM 31 / 37



Non–straightforward generalizations
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Waiting for the upgrade

Remember that actually u∗ = Sλ and therefore u∗ is in the
space

{u∗ ∈ H1(Rd) : −∆u∗ + u∗ = 0 in Rd \ Γ}.

The quadratic form can (and should) be written as follows

a((u, λ), (u, λ)) = ((u,u))1,Ω − 〈∂+
ν u∗, γu〉+ ((u∗,u∗))1,Rd .

We are going to introduce a cut–off function ϕ:

0 ≤ ϕ ≤ 1 ϕ ≡ 1 near Γ

ϕ ≡ 0 away from Γ.
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Exterior Neumann problem

Ω
−

Γ
Ω

+

Ω
obs

Ω
int

Γ
Σ

Ω
+

∂νu = 0 on Σ

−∆u + u = f in Ωint

−∆u+ + u+ = 0 in Ω+

T.C. on Γ

−〈∂−ν u∗, γu〉 = −〈∂−ν u∗, γ(ϕu)〉
= −((u∗, ϕu))1,Ωint ≥ −1

2‖ϕu‖2
1,Ωint

− 1
2‖u∗‖2

1,Rd

≥ −1
2Cϕ‖u‖2

1,Ωint
− 1

2‖u∗‖2
1,Rd
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With this idea we can...

Deal with the Neumann problem, at the price of introducing
a pre–asymptotic regime (the operator is actually not
elliptic in many cases)

Deal with very small coefficients inside the domain, as long
as the change happens at a certain distance from the
coupling boundary. There will be a pre–asymptotic regime
again. Apparently this has been known in the engineering
community since the beginning of times.
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Conclusions and perspectives

We have shown how a result that most people believed to
be false, but most practitioners took as true, was actually
true.

We are beginning to understand the rule of put your
coupling boundary at some distance of changes of
material properties.

In many cases, where energy is important (mathematically
or practically), it looks like the symmetric coupling (using all
four integral operators of Calderón’s projector) is going to
be the way to go: DG–BEM is one important case.

We are trying to understand why (or figure out whether)
non–symmetric coupling methods are not good for waves
in the time–domain.
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Thanks for your attention
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